

AIRS Atmospheric Infrared Sounder Status

George H. Aumann Project Scientist 30 Nov 2004

AIRS/AMSU/HSB Project Overview

Spacecraft: EOS Aqua

Instruments: AIRS, AMSU, HSB,

MODIS, CERES, AMSR-E

Launch Date: May 4, 2002

Launch Vehicle: Boeing Delta II

Intermediate ELV

Mission Life: 5 years

Team Leader: Moustafa Chahine

AIRS Project Objectives

- 1. Support Weather Forecasting
- 2. Climate Research
- 3. Atmospheric Composition and Processes

AIRS Data Distribution for Weather and Science

AIRS Data Distributed World Wide For Weather Forecasting

NOAA NESDIS (Weather)

GSFC DAAC (Science)

Science
 Community

Public

DIRECT BROADCAST (Weather)

- Universities
- Local Weather Stations
- Brazil (INPE)
- · China
- Korea
- DoD
- Other International

NCEP GLA C

NCEP, GLA, CMC, JMA, FNMOC,BOM, UK Met, ECMWF, Meteo Fr., DWD

AIRS/AMSU/HSB Standard Products

Radiance Products (Level 1B)	RMS Requirement	Current Estimate
AIRS IR Radiance	3%*	<0.2K
AIRS VIS/NIR Radiance	20%	10-15%
AMSU Radiance	0.25-1.2 K	1-2 K
HSB Radiance	1.0-1.2 K	N/A
Standard Core Products (Level 2)		
Cloud Cleared IR Radiance	1.0 K	<1.0 K
Sea Surface Temperature	0.5 K	1.0 K
Land Surface Temperature	1.0 K	TBD
Temperature Profile	1 K	1K
Humidity Profile	15%	15%
Total Precipitable Water	5%	5%
Fractional Cloud Cover	5%	TBD
Cloud Top Height	0.5 km	TBD
Cloud Top Temperature	1.0 K	TBD

^{*}Absolute Relative to NIST

AIRS/AMSU/HSB Instrument Status

Quality Assurance Flags

Level 1b Status

Level 2 Status

Radiative Transfer

Cloud Clearing

Retrievals

Data Assimilation

Research Data Products

Plans

AIRS/AMSU-A Instrument Status

AIRS

- Excellent health
- No trends in almost all currents, temperatures, and voltages

Cooler active drive levels creeping up very slowly—at present rate of increase we should never have to de-ice

Chopper drive current, chopper drive delay, chopper phase slowly increasing

 The levels are far below alarm levels, but potential effect on M11 and M12 channel are being monitored

Both of the above trends are thought to be due to slow ice build up

Since launch, 20 channels have experienced increased noise (all but one due to radiation dosage effects)—14 of these have recovered after temperature cycling, leaving just six detectors which were good at launch but not today

AMSU-A

- Age is starting to show
- Change in electronics since launch are gain degradations of about 17% in Channel
 5 and about 5% in Channel 6 (accounted for in the two point calibration)
- Temperature sensors became noisy in Nov 04

Quality Assurance (QA) Flags are used to alert the user of out-of-spec conditions

The L1b files include all spectral radiances measured by AIRS

They have been radiometrically calibrated.

The data have not been tuned, edited, apodized, shifted or re-registered QA flags are set as necessary

The L2 files include results from all all processed spectra.

If the solution does not converge at key points appropriate flags is set

When a L1b or L2 flag is raised, the user can

skip the spectrum or retrieval evaluate if the flag is relevant to his application Ignore the flag at his own risk

A considerable effort in the V4.0 delivery is in QA flag refinements Three presentations this afternoon and tomorrow deal with QA.

Illustrations of effects using granule 176 from 20020906 centered in the Atlantic ocean centered on the Azores.

Temperatures range from 200K cloud tops to 300K at the surface

Gradients between adjacent footprints are as large as 80K

AIRS Calibration Accuracy, and Stability Validation

Radiometric accuracy and stability relative to RTG.SST

Spectral Stability relative to upwelling

L1 b Algorithm Theoretical Basis (ATBD) update required

AIRS IR Radiometry Extremely Stable

Instrument Stability
Fundamental to
Weather and Climate
Quality Observations

SST2616 compared to RTG.SST at night -0.57K bias observed -0.37K bias expected

First principles using NIST traceable calibration

Stability better than 8 mK/Year

difference between observed and expected bias due to cloud contamination

Aumann et al 2004 "Evaluation of AIRS Data for Climate Applications" SPIE 5570b Las Palmas September 2004

AIRS IR Absolute Radiometry better than 0.2K

SST1231 compared to RTG.SST

two year mean

day bias=-0.22K night bias=-0.57K

day-night bias observed 0.35K MODIS 0.37K

day bias observed -0.22Kexpected zero

explanation: low cloud contamination

Aumann et al 2004 Denver August 2004 SPIE 5548-42

AIRS spectral calibration more accurate and stable than the +/-8 ppmf required for weather applications

SRF centroids determined relative to resolved upwelling spectral features

knowledge within 0.2 ppmf

stability +0.9+/- 0.5 ppmf/year

The trend needs to be corrected for critical climate applications

Day/night (red/blue) variability under investigation

November 2003 protective shut down due to Solar flair

AMSU Level 1b

The AMSU is used for the initial estimate of the T(p) profile and the clear column radiance.

The AMSU calibration is complicated by sidelobe issues.

Mean bias over ocean for AMSU channels 5 through 14 using (btemp.antenna-calc.ECMWF)

The scan position dependent bias is a calibration artifact

McMillin /NESDIS

The radiances are statistically bias corrected in level 2 processing using empirical tuning.

The empirical bias correction appears to be stable

Closure is required on AMSU Level 1b

L1b product status has to upgraded to "beta validated".

RTA

The radiative transfer algorithm (RTA) converts the the signal from surfaces and layers in the atmosphere to the signal seen from space.

Evaluation of the (observed - calculated.ECMWF) indicates no scan angle dependence.

Residual frequency dependent bias at the less than 0.5K level may be due to systematic offsets in the ECMWF analysis.

Bias change as function of time at the 100mK/year level in co2 sensitive channels is due to increase in co2 column abundance of 2.2 ppmv/year

RTA

What may be good enough for weather forecasting or 1K/1km requirements is not good enough for climate quality work

At the level of AIRS sensitivity, the atmosphere is not as simple as the current RTA

Global change is already evident in the AIRS data after only two years.

The RTA still uses the at launch 370 ppmv co2

Level 2 Status

Cloud-clearing

T(p), q(p) retrievals

Error estimation

Validation

The Level 2 Algorithm Theoretical Basis Document needs to be updated

Level 2 (geophysical) Product Status with examples from 20020906.176

Obtaining good retrievals in the presence of clouds is a key requirement

Obtaining good retrievals in the presence of clouds is a key requirement for forecast impact

Only 6% of the spectra are cloud free

using the classical spatial coherence test

bt1231 cx2616<1.2K clear 6% yield

28% of the spectra are reasonable cloud free using the cf3 spectral filter

The cf3 spectral filter use 2388 cm-1 and 2387 cm-1 channel and high SNR at 250K.

Obtaining good retrievals in the presence of clouds is a key requirement for forecast impact

Only 68% of the spectra can be used after cloud-clearing

28% of the spectra are reasonable cloud free using the cf3 spectral filter

The cf3 spectral filter use 2388 cm-1 and 2387 cm-1 channel and high SNR at 250K.

Obtaining good retrievals in the presence of clouds is a key requirement for forecast impact

Only 68% of the spectra can be used after cloud-clearing

The cloud-clearing algorithm has difficulties in the areas of steep gradients

AIRS/AMSU/HSB

Level 2 Validation

Initially based on ECMWF comparisons

Now switching to more accurate ARM/CART atmospheric state definition during EOS Aqua overpasses

Analysis complicated by lack of error estimates in the level 2 products

LAYER MEAN RMS TEMPERATURE (°C) GLOBAL DIFFERENCES FROM "TRUTH" September 6, 2002 50N to 50S Ocean

1 K rms in 1km layers in the troposphere achieved for non-polar ocean cases relative to ECMWF analysis

Susskind November 2004 Hawaii meeting on "Sounding of the Environment"

Error Estimates for the retrieval from each footprint are key to data assimilation and level 2 product generation

There is little correlation between the estimated error for each retrieval and the demonstrable error based on surface truth

AIRS Data Assimilation

AIRS radiances have been assimilated into the operational forecast at ECMWF and UKMeto since May 2004.

Experimental radiance and L2 assimilation at NCEP/DAO

All NWC report significant positive forecast impact with AIRS data

Atmospheric InfraRed Sounder (AIRS) Observations: Impact on Weather Forecasts J. Le Marshall, J. Jung, J. Derber, R. Treadon, S.J. Lord, M. Goldberg, W. Wolf, H.C. Liu, J. Joiner, J. Woollen and R. Todling. NOAA/NASA/NAVY/Air Force Joint Center for Satellite Data Assimilation Camp Springs, MD

"The improvement in forecast skill at 6 daysequivalent to gaining an extension of forecast capability of several hours in both hemispheres"

Figure 2. 500hPa Z Anomaly Correlations with (Ops.+AIRS) and without (Ops.) AIRS data, Northern hemisphere, January 2004

0.5% AIRS data utilization limits forecast impact Table 2: AIRS Data Usage per Forecast Initialization

Data Category	Number of AIRS Channels	
Total Data Input to Analysis	~200x10 ⁶ channels	
Data Selected for Possible Use	~2.1x10 ⁶ channels	
Data Used in 3D VAR Analysis (Clear Radiances)	~0.85x10 ⁶ channels	

Bob Atlas (GSFC) assimilations of AIRS level 2 data shows improved 500 mb geopotential height anomaly correlation

500 MB GEOPOTENTIAL HEIGHTS

Level 3 Products

Level 2 products are mapped into daily, weekly and monthly level 3 products

This reduces the data volume by two orders of magnitude for climate research

The Level 3 products are currently only beta validated (not for research) partly due to the lack of error estimates for each retrieval

AIRS Upper Atmospheric Water Vapor (July 2003) level 3 product

10% of the water is above 600 mb Upper tropospheric water transports moisture and latent heat away from the tropical oceans towards the poles.

Standard Data Product Processing Status

Getting ready for V4.0 reprocessing

Level 1b Level 2

> T(p) q(p) validated over non-polar oceans with up to 80% clouds. Meets "radio sonde quality" 1K/1km requirement

Level 3 products (beta validated)

Clear ocean/land data subset

AIRS Research Products

Only 320 of the 2378 AIRS channels are used for the T(p), q(p) retrievals and data assimilation

The remaining channels can be used for research products

The 320 channels were picked by the AIRS team with an understanding of the instrument properties the calibration and the details of the retrieval algorithm.

Developers of research product need to be very familiar with the channel properties file and QA flags

Research Products using AIRS data

McMillan: CO

Strow: SO2 and Aerosol

Fetzer et al.: Correlations between Kelvin Waves, OLR and UTW

Knutson Surface Emissivity

Aumann: Two year AIRS trends

Irion: Ozone

Li, Hunag, Revercomb Cloud Emissivity

+ Carbon Dioxide, Methane, OLR, and more

CO retrieved from 4.67 μm CO fundamental vibration-rotation band (2180-2220 cm⁻¹)

Irion: Day/night retrievals of Ozone with AIRS.

What's New from AIRS:

- Coverage of Ozone Hole in Polar Winter (Night);
- Tropospheric Ozone (In Progress)

AIRS Observations of Volcanic Eruptions

Images below are differences in B(T) biases between two AIRS channels. (Biases are relative to ECMWF.)

50, Cloud: 1285 - 1345 cm-1 Bias Ash Cloud: 1228 - 913 cm-1 Bias

Mt. Etna Eruption (28 Oct 2002)

50, Cloud Ash Cloud Etna - 28 Oct 2002 - gran 012 - 1284.9-1345.3 cm-Etna - 26 Oct 2002 - gran 012 - 1228-995 cm-1

Anatahan Eruption (10 May 2003): Differential Movement of Ash and 50, Cloud

50, Cloud Ash Cloud Analastan, Marrady Roll 19 May 2000 - gran (SP) (UUS 900 no S

L. Strow, S. Carn, S. De-Souza Machado, Y. Edmonds (UMBC)

Under final review: Geophysical Res. Letters

SQ2 and silicate spectral features are widely separated in AIRS IR spectra. Silicate features have opposite slope to cirrus in the 10-12 micron window.

Oct 28, 2002; Gransia 123; Profile 2224

We have estimated total column amounts of 502 and ash emitted by Mt. Etna with reasonable agreement with other (error prone) estimates.

See: http://toms.umbc.edu/airs_archive.html for AIRS observations of other volcanic eruptions.

Observations of Dust with AIRS

Case Study: Mediterranean Storm in October 2002

B(T) OB5 1231 - 991 cm-1 Sensitive Dust Detector

991 cm-1 Bias relative to ECMWF shows up to 10K BT depression

L. Strow, S. De Sousz-Machado, UMBC Manuscript in preparation

AIRS can measure dust at night!

MODIS visible image shows similar storm morphology

Top: Average B(T) spectrum Bottom: Average dust signature

MODIS vs AIRS observed optical depths (for AIRS 900 cm-1 channel)

Dust seen globally with AIRS: Average dust signal for July 2003

S. S. Leroy, E. J. Fetzer and S. L. Granger (2004) "The interaction of Atmospheric Kelvin Waves with Humidity and Convection as Observed in AIRS Data. Submitted to Journal of Geophysical Research.

The 47+/-9 mK/year trend in the difference between bt2229.- bt2388 is explained by a 2.2 ppmv/year co2 and 0.6 ppmb/year n2o increase

Aumann et al 2004 (Submitted to GRL)

AIRS Product Upgrade Plans

Updated ATBD for level 1b and Level 2

Validation of level 2 products over land and polar

Global emissivity maps to facilitate data assimilation over land

Cloud-clearing for single footprints for better horizontal resolution

Global co2 and ch4 maps

Measure five year trend in mid tropospheric temperatures and water

Use AIRS data for intermediate range (El Nino) forecasting

Improve AIRS data utilization by science community

Summary

With more than two years of data the stability and accuracy of the AIRS calibration is established at a climate quality level and sets the standard for future hyper-spectral sounders

AIRS data are used operationally in the forecast with positive impact

Level 2 products have validated 1K/1km accuracy over non-polar ocean with about 50% yield from the bottom to the top of the atmosphere

Publications of research products are emerging

The first climate trends are showing up in the AIRS data

